Experiment no. 15

Aim: Study of Local Anesthetics by Different Methods

References:

- 1. Ghosh, M. N. (2008). Fundamentals of Experimental Pharmacology. Hilton & Co.
- 2. Kulkarni, S. K. (2019). Handbook of Experimental Pharmacology. Vallabh Prakashan.
- 3. OECD Animal Testing Guidelines.
- 4. PubMed: Local anesthetic mechanism studies. https://pubmed.ncbi.nlm.nih.gov

Background and Principle:

Local anesthetics (LAs) are drugs that cause reversible loss of sensation in a localized area of the body without affecting consciousness. They act mainly by blocking voltage-gated sodium channels in the neuronal cell membrane, preventing nerve impulse conduction.

Their effectiveness can be studied using different models in animals by observing:

- Loss of pain response (nociception)
- Loss of corneal reflex (motor/sensory inhibition)
- Inhibition of nerve conduction
- Increased pain threshold

Common agents: Lidocaine, Procaine, Bupivacaine

Experimental Methods:

1. Intradermal Wheal Test (Guinea Pig Pinna Method)

Principle: When an acid (like HCl) is applied to the skin, it causes pain. Local anesthetics injected into the skin reduce this pain response by blocking sensory nerves.

Procedure:

- 1. Take a healthy guinea pig and restrain it gently to prevent injury.
- 2. Clip hairs from the ear (pinna) if necessary.

- 3. Apply a drop of 0.1N HCl to the skin of both ears. Observe the pain response like vocalization or twitching (this is the control response).
- 4. Inject 0.2 mL of 2% lidocaine intradermally into one ear (treated ear).
- 5. After 5 minutes, reapply HCl to both ears.
- 6. Record the absence or presence of pain response in the treated ear.

Observations:

Drug Used	Response Before Drug	Response After Drug	Duration of Anesthesia
Lidocaine	Positive (Pain)	Negative (No Pain)	~15 minutes

Interpretation:

Loss of pain response in the treated ear indicates effective local anesthetic action

2. Rabbit Corneal Reflex Test

Principle: Local anesthetics abolish the corneal reflex (blinking) by numbing the cornea and blocking sensory nerve endings.

Procedure:

- 1. Gently restrain a healthy rabbit.
- 2. Apply 1–2 drops of test drug (e.g., lidocaine or procaine) to one eye.
- 3. The other eye serves as a control.
- 4. After 1 minute, lightly touch the cornea with a cotton wisp.
- 5. If the rabbit does not blink, corneal reflex is lost.
- 6. Test at 1-minute intervals until reflex returns.

Observations:

Drug	Onset Time	Duration of Anesthesia	Time for Reflex to Return
Procaine	2 min	10 min	~12 min
Lidocaine	1 min	20 min	~22 min

Interpretation:

Shorter onset and longer duration indicate more potent anesthetic action. Lidocaine performs better than procaine.

3. Frog Sciatic Nerve-Gastrocnemius Muscle Preparation

Principle: Stimulation of a frog's sciatic nerve causes contraction of the gastrocnemius muscle. Application of a local anesthetic blocks the nerve impulse, and the muscle stops contracting.

Procedure:

- 1. Pith a frog and dissect to expose the sciatic nerve and gastrocnemius muscle.
- 2. Mount the nerve-muscle preparation on a stand or kymograph.
- 3. Stimulate the sciatic nerve electrically and observe muscle contractions.
- 4. Apply lidocaine directly on the sciatic nerve.
- 5. Observe time taken for abolition of contractions.
- 6. Rinse the nerve with saline and observe recovery of response.

Observations:

The same of the sa	Drug	Time Applied	Time of Conduction Block	Recovery Time
	Lidocaine	0 min	5 min	20 min
Section of				

Interpretation:

Disappearance of muscle contraction shows blockade of nerve conduction by local anesthetic.

4. (Optional) Tail Immersion Method in Rats

Principle: A local anesthetic reduces pain sensation and increases the latency (reaction time) for tail withdrawal in response to heat.

Procedure:

- 1. Immerse 2–3 cm of the rat's tail in warm water (50 ± 0.5 °C).
- 2. Record the tail-flick latency (seconds).
- 3. Administer test drug locally at tail base.
- 4. Measure latency at 5, 10, 15, and 20 minutes.

Observations:

Time (min)	Control Group	Lidocaine Group
0	2.2 sec	2.3 sec
5	2.1 sec	7.8 sec
10	2.0 sec	6.5 sec
	ank	
15	2.1 sec	5.1 sec
4000		

Interpretation: Longer tail-flick latency indicates increased pain threshold due to local anesthetic action.

Results and Discussion:

- Lidocaine showed faster onset and longer duration compared to procaine.
- The corneal reflex test is useful for sensory nerve evaluation.
- Intradermal and tail immersion methods help assess peripheral nerve block and pain relief.
- The frog nerve-muscle setup demonstrates nerve impulse conduction block, a core mechanism of action.

Conclusion:

All tested methods confirm that local anesthetics like lidocaine produce reversible inhibition of pain or nerve conduction. Lidocaine is superior in potency and duration compared to procaine.

Precautions:

- Follow ethical and humane guidelines for animal use.
- Use freshly prepared and sterile solutions.
- Avoid injury or contamination of eyes, ears, or tissues.
- Dispose of biological waste safely.